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Abstract 

The quaternion formulation of relativistic quantum theory is extended to include curvi- 
linear coordinates and curved space-time. This provides a promising framework for further 
exploration of a unified quantum/gravity theory. 

t. Introduction 

One of  the most dramatic problems remaining in fundamental physics is 
that o f  combining quantum and gravity theory in a relativistic, second quan- 
tized formalism. A necessary prerequisite, it seems to me, is to Fmd a 'natural' 
mathematical structure of  quantum theory and for gravitation and then begin 
to bridge the gap between them by extending the quantum theory into curved 
space-time (Brill & Wheeler, 1957). This paper attempts to demonstrate such 
a natural structure and to show, fairly explicitly, how to extend the quaternion 
quantum theory into curved space-time. Rastall (1964) discussed the general 
nature of  this problem. Here we try to develop more specific formulas for the 
transformations, covariant derivatives, and space-time dependence of  the 
quanternion basis elements. 

2. Fields in Curved Space- Tirne 

We have identified six basic quaternion fields. They are distinguished by 
their transformation properties under a change of  coordinate reference frame 
and by their structure in a curved space. The simplest, of  course, is the scalar 
field ¢(x). Four others, which seem directly applicable to particle physics are 
(Edmonds, 1973a) the 4-vector V = V~b~, the axial 4-vector a --- a~a~, the a- 
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spinor $a =- ~aU ku, and the v-spinor ~v =- $d~lu. Here, (bu}, (a u}, {ku}, and 
{ lu} are the quaternion basis elements, which have their own coordinate or 
curvature forms, which we shall discuss. In the flat space Cartesian reference 
frame these all can be reduced to {eu} (Edmonds, 1972). The sixth field is 
the space-time curvature field itself, L - L Ue u. It has four complex functions 
L u at each event x. Knowing L (x) means knowing the space-time curvature 
in coordinates which reduce to Cartesian coordinates in the flat limit, i.e. 
{bu} ~ {eu} as the curvature goes to zero. We shall discuss other coordinate 
systems shortly. Usually, one says that gu,,(X) = gvu(x) = gu~,* gives a ten 
function description of the coordinate system and the space-time curvature. 
In the quaternion formalism we are developing here, guy is a function of the 
eight real functions in the quaternion L. 

The 4-vector, basis vector, quaternions are defined to be: 

b u(x ) =- L *euL =- bu(x)('~) eo~ (2.1) 

We see that bu = bu* since eu = eu*. The four complex functions LU then 
generate the sixteen real functions bu(a). One way to characterize a truly 
curved space is to say that no global coordinate transformation exists from 
the given coordinate system to a Cartesian coordinate system. (For example, 
the surface of a sphere is a curved two-dimensional space which can be mapped 
into the tangent plane, invertably, except for the point on the sphere opposite 
the point of tangency.) In quaternion form this says that the inverse quaternion 
L- l ,  where LL -1 =_ Co, does not exist for all x. Otherwise, we could calculate: 

(L *)-1 bu L -! = eu (2.2) 

for all x, and hence transform to flat space Cartesian coordinates. 
The metric tensor is then defined to be: 

guy(x) ==- ½[(bu* bu) + ( )*] =(bulbv)  (2.3) 

To insure that guu is real, in curved space, we should perhaps modify this to: 

gu,, =- ¼[(bu~;bv + bvbS' )  + ( )*] (2.4) 

but this is not really necessary since bu is real. The usual flat space metric will 
also be needed. It is a special case of equation (2.3): 

-1  (2.5) 

1 

From equation (2.1) and (2.4), we can express g~v directly in terms of LUeu. 
We have previously written the curvative equation in terms of the 4-vector 

basis elements (bu} (Edmonds, 1973a), 

but (DUD v - DVDU)bv = Kbu*MUVb u (2.6) 
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The non-commutativity of the covariant derivative components (acting on a 
4-vector) is another way to express the curvatuve of a space. Here the curva- 
ture is nonzero when muv, the 'matter tensor' is nonzero at some event x. 
Using equation (2.1), we can convert this into a partial differential equation 
for (L ~) instead of  for (bu}. I do not know if this would make actual applica- 
tions easier to solve but certainly we must find the (Lv) either from (bv}, 
using equation (2.1), or directly from equation (2.6). In Edmonds, 1973a, 
we find explicit expressions for DvDvbx in terms of PuXv and Dubn and 
expressions for Funv and Dubs, in terms of {~ubx (~), bx(a)}. Hence equation 
(2.6) is a weU-defmed nonlinear second-order partial differential equation for 
{bu(C0}. The {Fuxv} is defined by the requirement DVgv~, - O. However, in 
curved space this does not mean that DVbv(x) = 0, except in the 'neighbor- 
hood' of a single chosen even Xo. As a result we have a new subtlety in curved 
space quantum theory. 

The usual axiom for generating quantum equations is P = PUeu ~ ili~ = 
ihOUeu. In curved space-time this would become ihDUb u or ilibuDU and these 
two possibilities are not equivalent physically. Similarly D = b~D ~ ~ D* = 
DUbu* or b u *D u which are not equivalent. This may mean interesting 
inequivalent 'subcatagories' of wave equations describing the fundamental 
particles, i.e. several kinds of Dirac equations and Maxwell equations. 
This point really needs to be looked into. 

So far, we have only considered the curved space properties of {b~}. We 
have seen that a curvature inducing 'wave' equation can be defined for 
{b,} +~ {LU}. Consider then the other quaternion types {ku, l., au}, We must 
specify how they depend on the space curvature. We do this as follows: 

ku(x ) - L * e , ,  lu(x ) -L*ev. , and au(x ) -L?-euL (2.7) 

At this point, these definitions may not seem well motivated but they are 
rather logical choices based on the usual flat space Lorentz transformation 
structure of each type (Edmonds, 1972). Often it is convenient to consider 
linear combinations of the basis quaternions in constructing wave functions. 
For example, we usually write ~a = tt'aufu where fu -fu(~)k~, e.g., 

{f.} -- ((eo + e3), (el - ie2), (el + ie2), (eo - e3)}. 

This gives: 

fu -~ fu(~)ko~ = fu (cOL* ec~ = L * (fu(COe~) (2.8) 

which describes the curved space-time dependence of the spin eigen-state 
basis vectors. A similar construction holds for (/u} and {au}. 

We must next consider the covariant derivates of these basis elements, in 
order to construct coupled wave equations. We have, for example: 

DUkv = DU(L * ev) = DU(L Xex * ev) = DU(L X)ex * ev (2.9) 

Thus, knowledge of DU(L x) from DU(bv) and by -L'*evL gives us (implicitly 
at least) a complete description of the needed covariant derivatives. We see 
again that {L u} is more 'fundamental' in the basic structure than (by(a) }. 
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3. lnvariant FieM Equations 

With the structure we have developed so far, we can consider the formation 
of partial differential field equations. We do this by postulating two very 
important basis principles (Edmonds, 1973a, Rastal, 1964). 

Invariance Principle 

All wave equations are formed out of invariant quaternion units. This insures 
that the equations are 'form invariant' for any invertable coordinate trans- 
formation (General Relativity). 

Lorentz  Principle 

All wave equations must be form invariant under a special symmetry group 
which transforms each quaternion basis element: 

b u - > , ~ * b u ~  a u -+,~PSau~ , k u -%oq~'$ku, I u - '> f* l , ,  

b ~ -~LZ*b ' f ,  
where ~ 0 5  = 1. In other words, only those wave equations which are 
unaltered by the above substitutions are considered applicable to the physical 
world. It is currently a mystery to me as to why God would put such a restric- 
tion on the design of the universe. (Perhaps it is related to the conservation 
laws.) This is a stringent restriction on nature and no doubt has some deep 
motivation at present unclear. I think that this requirement is equivalent to 
saying that all wave equations belong to some representation of the ordinary 
Lorentz group, even in curved space-time and accelerated reference frames. 
One used to say that Lorentz invariance made all inertial observers equivalent 
(no preferred frame). This is not true, however. The three-degree background 
radiation apparently singles out a preferred reference frame so that one can 
define absolute motion relative to the 'universe' or the 'vacuum'. The invariant 
quaternion structure makes all laws form invariant for any reference frame. 
This is not incompatible with a special boundary condition on the universe 
singling out a special frame (the big bang at t = 0). We see the Lorentz principle 
as a mathematical symmetry, really unconnected (except historically) with. 
any particular reference frames. 

We could, for example, write the following coupled equations. 
(P - (e/c)A)~Oa = mc~o, P = ihD, pu = ihD u (~]a) 

(P:~ - ( e / c )A$)~v  = mC~a, D = buD u, ~ =- ~Ot, 

Kb ~" 1 , 0 1 DU , 0 

"7 

+ ( }~" + (DUA)(DVA$)[ by (3.1) 
J 
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These equations probably do not meet all the physical requirements of a 
reasonable unified theory but are intended to demonstrate the Invafiance 
Principle and Lorentz Principle. It is easy to check that both are satisfied. The 
quaternion structure and these two restrictions do not leave very many choices 
as to equation structure. 

The above equations are not well-defined until we specify how to calculate 
DUAZ,, D ~ ~at~, and D u ~ f . We obtain these by requiring that DUA = D~(A ~bz,) 
transform like/~, since the quaternion A is invariant. We have DU(A Vbv) = 
(DUAU)bv +AU(DUbu) and DUbv is known. In this particular case we can 
proceed differently. Since DU(gvx) = 0, we can define DUd v to transform like 
D u (gVXb~.). However, in ~aUk~ we expect that ffa u transforms not like g~Vk v 
but like (k u ]kU)kv, where (ku]U')(kvlkx) --~ 6 ~  defines (k~lkV), by analogy 
with gUU, and 

(k~, lkx)=¼[(k~,$kx)+()*+( )* +(  )**] (3.2) 

Therefore, we must define DUma v such that DU(~aVkv) = (DUtPaV)kv + ~(DUkv) 
transforms like P~, knowing DUke, from Section 2. (We do not apparently 
need to raise and lower quaternion indices, except for tensors.) A similar 
procedure would be required for the covariant derivatives of f l y  and a v. Care 
must be exercised in raising and lowering the non-4-vector indices since only 
(bulbv) = gu; commutes with D x. The covariant derivatives of (ku[kv), (/ally), 
and (au 1%) must be calculated from their definitions and DUke,, DUl~,, and 
DUav. 

To illustrate the occurrence of fields involving the {au} quaternion elements, 
consider the following equation (Edmonds, 1974a) 

PW=mcV,  V ' - ~ * V ~  

P~;V=mcW, W ' - ~ $ W ~  (3.3) 

Here W= WUa u and V= VUbu. Since a u - L $ e u L ,  we have ak ~ =L$ekt-L = 
- a k ,  ao ~; = LSeoL = ao, even in curved space. The Lorentz Principle now 
requires that m £~°=5e m, which means that m = m$, i.e., such particles cannot 
have quaternion mass, contrary to the Dirac equation. This equation can be 
easily coupled to the photon A in the usual way, and presumably also to the 
gravity (curvature) equation. Its Maxwell current is, however, different from 

W ,equ ,  ° ) bu S ~A u for the Lorentz Principle. 

We have only considered classical wave equations, but second quantization 
can be introduced in the quaternion formalism (Edmonds, 1974b). It is 
most natural to postulate commutation relations directly in terms of the 
invariant quaternion fields, e.g. 

~at~a + ~at~a t = t~ (x -- x'), ~a~ltv + t)vt~ a = 0 (3.4) 

This gives a very complex structure since the k u and l u already dO not commute, 
because they are quaternions, and now the fields ~a u and ~b u are also operators. 
We must define (~aUku) 4f in terms of ~a ~t'~ and k S which requires that we 
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consider whether tt/at*k u = kut~a u is going to be valid in a second quantized 
formalism. It is simplest to accept this and to assume that ktfl = k u. However, 

k u t  = (L* eu) t  = eu tL  *t  (3.5) 

The unquantized analogue o f q  ? is q*, therefore we should expect that 
eu? = et* is valid. It does not appear that ku? = k u is acceptable since L is an 
operator describing the curvature field. Similar considerations hold for but,  
lut, and at* t, which can each be expressed in terms of L and L ?. Previously, we 
considered the commutation relations for the gravity field in terms of b u and 
but (Edmonds, 1974b), which are not frame invariant fields like the others. 
We could instead consider the gravity field in terms of L, but this also is not 
a frame invariant field (L' = LSe  -1, see equation (4.7)). If we then postulate 
a commutation relation such as 

L t L - L L  ? = 6(x  - x ' )  (3.6) 

it will likely not be frame invariant. Perhaps something drastic like: 

bU~ bt* - bub u? = 6(x  - x ' )  (3.7) 

will be appropriate. Certainly gravity is unique in physics, so it should not be 
surprising that its second quantized form will be unusual. This problem needs 
much further attention. 

4. General Coordinate  Transformations 

In the above discussion of  wave equations in curved space-time, we assumed 
pseudo-euclidian coordinates (b u ~ eu, as the curvature goes to zero), We now 
consider how to introduce a general invertable coordinate transformation 
from this curved space frame. The following will of course apply to the special 
case of flat space transformations. 

The actual coordinate transformation x u' = xt*'((xV)) is not 'of  interest' as 
much as is the transformation relations for such things as A u, ~a ~, or l x. We 
therefore approach the transformation in an unorthodox manner. We say that 
a coordinate transformation is 'specified' by a quaternion .La=~ a t*(x)eu, 
~ u  = oLPRt* + i.LPi u, i.e. by eight real functions ofx.  We consider only 
invertable transformations, meaning that ~ -1 exists such that ~?~9? -1 = eo. 

We then define the new quanternion basis elements as follows: 

, , 
c~°q~*bu'~ =- bu, ~ kt* - k  u 

, t r _ _  

I u =-lu, and ~_q~$at* ooqO=a u (4.1) 

These can be inverted using (~ ) -1 ,  ( ~ . ) - 1 ,  and (~LP *)-1. Since members of 
(bu ' )  are linear combinations of the members of (bt*), we can define a~u and 
art* by 

t _ _  V ~ U bt* = at, b v and b v = a vbt* (4.2) 
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We then f'md that aura x = 8v x and aUva~ = 8x u. Further, we can determine 
{a~} from {~ga~, b~(~)), since 

~ * b u '  C~ = ,LP*a~b~,~ = b u ~ £a*b x ~P= aUxbu ~o-~u*,,ocflVbx(~) eueae v 

= a ~ b ~ e a  (4.3) 

We make contact with the actual coordinate transformation by defining: 
/zp 

0x x dx  u' - aUx dx  x = ~x  x dx  (4.4) 

This gives a set of  coupled partial differential equations for the new variables 
/ ~ t ,  # • • • ~ _  r r x m terms of the old, x . The new metric is given by guy = (bu [by). 

• . ! • . t t 

There must exist a quatermon L (x) which gwes the bu(x  ) = bu(~) ea 
directly due to the space-time curvature. Therefore, we postulate that: 

bu' =- L '*euL '  (4.5) 

and find that 

b u = , L P * b u ' f  = f* (L '*euL ' )~ , .~= (L'~_ZP)*eu(L'~) (4.6) 

Therefore, we can calculate L'  from 

b u = L *euL = ( L ' ~ )  *e u (L'~---~) ~ L '  = L;,o~ -1 (4.7) 

For the other quatemion basis elements we find analogous formulas: 

~P * k u' = k u = ,LP * L "t" eu = Le  u ~ k u' = L '* e u (4.8) 

is consistent with L '  = L ~ 9a-1, which was needed for bu'. 
To complete the coordinate transformation discussion, we must specify 

how the wave function components transform. These are defined such that 
the quaternion wav, e functions are frame invariant. The required transforma- 
tion laws are as follows: 

tat  Co lu =- c~P*CvUlu, and aU'au -- ~ t '*aUau~ (~' (4.9) 

These give the new wave function components in terms of the old ones and 
the coordinate transformation matrix, e,g. {Ca (x) u '}  is given in terms of 
{Sq(x) u, Ca (x)U}. We must now show that this transformation law leaves the 
quaternions invariant. We have 

:l: tz, , /z, £z, (C~ ku) = 4'au'~*ku ' = %  ku = ~*(4'aUk.) 
$ t.t~ ~ la¢ , t lat = £e (4 .  lu) = g,~ ~ tu = % l .  £e*(~f l  u) 

~*(AU'bu'),,g~' = AU'  ~ * b u '  LP = Ata'bta = ,~, * ( A t a b u ) ~  

.gP$ (aU'au').LP = aU'~---~$ au'~P = aU'au = ,ga$(aUau)~ (4.10) 
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which ' shows' that  the quaternions are invariant as desired. It is also easy to 
show that  these definitions have the required group structure: x ~ x '  with 
~Lf and x '  -~ x"  with ~ £ ~  x --> x" wi thf l  f= J/~Lf. Proof: 

~ ~"z. ' =JC*,r,  ~'~- ' 
a "/~ "ra ,-# 

Le*,r, ~" t -  ' =  ,r, ~ " c a * t .  ' = ,r, ~" t .  = ~ e * J / *  

= ( j g L e ) * ( ~ * )  - I  ~,  

dJ /~rt/c = ,~a ""u ("1[~a)*~aUk~z (4.11) 

We now have a way o f  writing quaternion wave equations in curvilinear 
coordinates and curved space-time. The problem of  second quantizat ion for 
gravity needs further work but  this structure seems to provide a beautiful 
and natural framework for solving this important  problem. 
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